How Did AI Singapore Build a “200” Strong All-Singaporean AI Engineering Team With the Blue Ocean Strategy?

When AI Singapore started in June 2017, Laurence Liew, Director for AI Industry Innovation and AI Makerspace in AI Singapore was on a mission to help 100 companies build their AI products and solutions through the 100 Experiments (100E) programme. Starting with four AI engineers/data scientists, and co-workers from his previous organisations, Laurence shares how he has managed to build a 200 strong all-Singaporean AI Engineering Team with the Blue Ocean Strategy.

28 April 2021 / By Laurence Liew

The classic management book “Blue Ocean Strategy” by Chan Kim & Renée Mauborgne describes the business environment using the terms ’red ocean’ and ‘blue ocean’.

Blue ocean strategy is the simultaneous pursuit of differentiation and low cost to open up a new market space and create new demand. It is about creating and capturing uncontested market space, thereby making the competition irrelevant.


In short, avoid the red market and hunt in the blue market where your competitors are not playing.

When AI Singapore started in June 2017, we were tasked to help 100 companies build their AI products and solutions through the 100 Experiments (100E) programme. We started with four AI engineers/data scientists, with co-workers from my previous organisations whom I managed to persuade to join me.

We put out an advertisement and received around 300 resumes, of which only ten were from Singaporeans. I only managed to hire one Singaporean to join our team – He is still with us today. 

AI Singapore Team

Being a government-funded programme and hosted by a local university, our salary structure and incentives could not match what the industry was willing to pay. How could we build up an AI Engineering team to meet our 100E KPIs when we had big tech giants such as Google, Microsoft, Grab, Facebook, etc., looking to hire the exact talent profiles in Singapore?

We decided to hunt in the blue ocean for these AI talents instead and cast our net far and wide. 

AI Singapore launched the AI Apprenticeship Programme (AIAP)® in early 2018, where we deliberately hunted for AI talents using only two criteria:

  1. Must be a Singapore citizen.
  2. Pass the AIAP technical test and interview (read what we look for, test and interview).

We purposefully avoided stating the academic qualifications the candidate needed to have, such as a computer science or engineering degree with a specialisation in AI or ML. Instead, we stated the skills and knowledge the candidate needed to have to join the apprenticeship programme. We looked for talents that could be nurtured and developed in a short period of time. 

In other words, we looked for passionate individuals who probably self-taught themselves AI/ML and Python (or R) programming and basic software engineering skills. They typically would have gone online and participated in various MOOCs or read up and practised their AI/ML skills on platforms such as Kaggle; were familiar with cloud computing and data management. Only some would have had formal education in AI/ML at the university level.

One of the biggest misconceptions that hiring managers have is that only Computer Science graduates can do AI and ML. Some of my best AI engineers and data scientists have degrees in economics, psychology, business, biology or industrial engineering. 

What we have found is that the ability to learn fast, passion for solving data problems, and the love of working with data is key to being a good AI Engineer or Data Scientist. 

Everyone can learn to program. Not everyone has a passion for data.

Our apprentices come from many disciplines, but are united by a common passion.

This strategy has worked out exceedingly well for us as we have found passionate individuals from various disciplines who have decided to cross over to the AI/ML sector. They have taken it upon themselves to learn AI/ML at a deep level. Some have spent up to three years poring over their old university mathematics and statistics books.

Kevin – one of our senior candidates from AIAP batch #3, commented, “I borrowed my son’s CMU math/stats and AI textbooks as I found that online MOOCs were not sufficient”.

Watch the interview with Kevin here.

What they lacked was the opportunity to apply their knowledge to a real-world AI/ML business problem.

The AIAP provided them the chance to work on a real-world 100E industry AI project or an internal AI Singapore project to build AI/MLOps platform tooling, AI solutions and products (AI Bricks).

The 100E programme is where AI Singapore matches and assembles a team of AI scientists, AI engineers, and AI apprentices to help an organisation solve their AI problem statement. The organisation brings the problem statement, dataset, domain expertise, engineering/IT resources and co-funding. 

The project phase of seven months is executed in-house within AI Singapore premises. The AI engineers assigned to the 100E project work with the apprentices just like they are full-time staff of AI Singapore. They are in-turn supported by our AI/ML Dev Ops and Data Engineering team, and the various AI Heads who are experts in the various fields in AI/ML.

We do not believe in the internship model where “students” are sent to an organisation to intern. The model is broken in Singapore. In our AIAP apprenticeship model, we hot-house the apprentices. This accelerates their learning and skills. And by working so closely with their peers on a daily basis, and in an environment where everyone eats-drinks-sleeps AI/ML and deployment, real-world AI projects get delivered.

The outcome is a Minimum Viable Product (MVP) co-created by AI Singapore and the sponsoring organisation. The combined team will typically work on 10-15 sprints over the seven months and deploy the model into production by the final month.

An excerpt from Provost & Fawcett’s 2013 Data Science for Business

In Provost & Fawcett’s 2013 Data Science for Business, the authors opined on page 319,

  • Data science is a craft.
  • Craft is learned by experience.
  • The most effective learning path resembles the classic trade where aspiring data scientists work as apprentices to masters.
  • Apprentices become “journeyman.”
  • Some become masters and take on apprentices.

The AI Apprenticeship Programme offers one such learning path. The Singaporean AI apprentices are mentored by AI Singapore’s AI mentors, some of whom might have gone through the apprenticeship programme themselves only a few months earlier.

While AI Singapore would like to retain all of our apprentices, we cannot, due to market forces and the agreement with our funding agencies to release as many as possible back to the industry. Graduates from AIAP work in organisations such as DSTA, Grab and DBS Bank today. Some have gone on to form their own AI start-ups.

Of the nearly 162 Singaporean AI apprentices trained to date, AI Singapore has retained around fifty as our AI Engineers in various AI Engineering roles such as AI/ML Ops, AI modelling,  Data Engineering and AI Products teams. Many take on the role of mentors to train incoming batches of apprentices. We also continue to hire from the industry experienced AI engineers to supplement our home-grown team.

In recognition of the AI Apprenticeship Programme’s talent development innovation, IDC awarded AI Singapore the “Talent Accelerator for Singapore” in 2019.

Read the IDC AISG award story here.

AI Singapore has engaged more than 500 companies and 15,000 professionals through our outreach and industry programmes. We have approved 66 100E proposals; completed and deployed 23 into production. As of April 2021, 162 Singaporeans have apprenticed with us and we expect that we will exceed 200 by the end of 2021. 

AI Singapore has done projects in nearly all of Singapore’s primary industry clusters. 

53% of the projects were for solution providers where they will use the co-created AI solution to serve their customers, and 47% for end-user organisations where the AI product will be used to increase productivity, lower costs, etc.

Of note among them, Sompo Holdings Asia collaborated with AI Singapore to build an AI-powered fraudulent claims detection system for enhanced claims processes. Sompo received an AI Award for general insurance during Singapore Business Review’s Technology Excellence Awards in 2020. Watch the interview with Sompo here.

Why AIAP works is that apprentices get to work on real-world AI projects – not toy and syntactic datasets and problem statements. They get to experience what it takes to deliver an AI project to an actual customer – including all the pains of working with some demanding customers, missing or limited datasets and changing user requirements.

One of our pioneer batch of AIAP graduates who now works for the defence industry said: “There are many technical tutorials out there, but few offer the hands-on experience needed to address real-world problems, and that is one of the key differentiators of AI Singapore’s AI Apprenticeship Programme.”

Read the interview with Derek here.

Growing our own timber – one apprentice at a time

This article was first published by Laurence on AI Singapore‘s website. AI Singapore is a national programme supported by the National Research Foundation and hosted by the National University of Singapore.

About Laurence

Laurence is the Director for AI Innovation at AI Singapore where he drives the adoption of AI by the Singapore ecosystem through the 100 Experiments, Makerspace and AI Apprenticeship programmes. He is also a visionary, serial technopreneur, and a veteran of the open source and HPC/Grid/Cloud community.

Connect with Laurence here.

Don’t stop here, check out these other great reads…

Inside the Fast-Moving, High-Pressure Life at UK’s Biggest Fintech
From the cryptocurrency boom to the rise of buy-now-pay-later, the fintech industry …
Meet Nethra Murali: a Singaporean advancing workplace diversity in the US and beyond
Since she started working in the U.S. seven years ago, Nethra Murali …
‘It’s lonely being a woman in tech’ – How This Startup Founder Hopes to Inspire More Female Leaders
Building upon the success of her startup UI-licious, Tai Shi Ling, 30, …
Shopee’s Philip Cheng carves out his career in Data Science and Engineering after returning to Singapore
Have you wondered what it takes to lead an Engineering team in …
5Qs with Dr Li Wei, CEO of Transfong Ventures
Our 5Qs series is a chance for you to get to know …
5Qs with the Monetary Authority of Singapore New York Representative Office
Our 5Qs series is a chance for the SGN members to know …
How to Cook Singaporean Fusion Dishes
If they can cook, so can you! Freshly staged at Yan Can …
From Army Captain to Recruitment MD: Andrew McNeilis Shares Expert Job Search Tips
Why do some candidates get selected over others? Andrew McNeilis, MD of …
My Tidying Epiphany
It has been a long 2021, and while the new normal is …
Meet the Singaporean Furniture Mavericks Making a Statement on Contemporary Living
It’s not just about cutting-edge design, it’s a way of living. Joshua …
Meet Vanessa Tan, the Tech in Asia Journalist turned Xiaomi Marketing Maestro
When Vanessa Tan joined the founding team at Tech in Asia as …
Going Green from the Red Dot: How Vikas Garg is Empowering Sustainable Consumption with abillion
Singapore is a gastronomical city-state where enjoying good food is a shared …